Chapter 6
Tempo and Beat Tracking

Temporal and structural regularities are perhaps the most important incentives
for people to get involved and to interact with music. It is the beat that drives music
forward and provides the temporal framework of a piece of music. Intuitively, the
beat corresponds to the pulse a human taps along when listening to music. The beat
is often described as a sequence of perceived pulse positions, which are typically
equally spaced in time and specified by two parameters: the phase and the period
(see Figure 6.1b). The term tempo refers to the rate of the pulse and is given by
the reciprocal of the beat period. Tempo and beat are fundamental aspects of music,
and the automated extraction of such information from audio recordings constitutes
one of the central and well-studied research areas in music processing. In this chap-
ter, we introduce some key techniques used in tempo estimation and beat tracking.
Furthermore, we discuss some of the challenges one has to face when dealing with
music where certain model assumptions are not fulfilled.

When listening to a piece of music, we as humans are often able to tap along with
the musical beat without difficulty—sometimes, we even do this unconsciously. In
the case that we lose track at some point in time, maybe because of a tempo change
or rhythmic displacement, we are able to recover quickly and resume tapping. How-
ever, simulating this cognitive process with an automated beat tracking system is
much harder than one may think. Recent beat tracking systems can cope well with
modern pop and rock music that has a strong and steady beat. In deriving this in-

formation, most systems are based on the assumptions that beats correspond to note
onsets (typically percussive in nature) and that beats are periodically spaced in time.
Howevet, there are many types of music where these assumptions are violated. For
example, in string music a note may be played softly with a barely noticeable on-
set, or a musician may slightly lengthen certain notes to shape musical phrases. In
general, musicians do not play mechanically at a fixed tempo, but slow down or
accelerate at certain positions to create tension and release. As a consequence, the
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Fig. 6.1 Waveform repre-
sentation of an excerpt of -
“Another one bites the dust”
by Queen. (a) Note onsets.
(b) Beat positions.
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presence of such local tempo changes makes the extraction of beat positions a very
challenging task. Still, at least when familiar with the type of music, humans are
capable of anticipating local tempo changes and tracking the beats even for highly
complex music.

In most approaches to automated tempo and beat tracking, the first step is to es-
timate the positions of note onsets within the music signal (see Figure 6.1a). This
task, which is also referred to as onset detection, is discussed in Section 6.1. In
particular, we show how to transform a given music signal into a novelty represen-
tation that captures certain changes in the signal’s energy or spectrum. The peaks
of such a representation yield good indicators for note onset candidates. We have
seen a similar concept when applying novelty detection to music structure analy-
sis (see Section 4.4). In Section 6.2, we introduce the notion of a tempogram, which
represents local tempo information on different pulse levels. Such a time~tempo rep-
resentation is obtained by analyzing a novelty representation with regard to reoccur-
ring patterns and quasiperiodic pulse trains. In this context, we study two important
methods for periodicity analysis, one using Fourier and the other using autocorre-
lation analysis techniques. We then continue in Section 6.3 with the topic of beat
tracking. First, we introduce a mid-level representation that captures meaningful lo-
cal pulse information even in the presence of significant tempo changes. Then, based
on a dynamic programming approach, we discuss a robust beat tracking procedure,
which assumes a roughly constant tempo throughout the recording.
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6.1 Onset Detection

Transient

Fig. 6.2 Ilustration of attack, transient, onset, and decay of a single note (based on [1]). (a) Note
played on a piano. (b) Idealized amplitude envelope.

6.1 Onset Detection

Generally speaking, onset detection is the task of determining the starting times of
notes or other musical events as they occur in a music recording. In practice, how-
ever, the notion of an onset can be rather vague and is related to other concepts such
as attacks or transients. As discussed in Section 1:3.4, there is often a sudden in-
crease of energy at the beginning of a musical tone (see Figure 6.2a). The attack of
a note refers to the phase where the sound builds up, which typically goes along with
a sharply increasing amplitude envelope. This is also reflected by the initial phase
of the ADSR model shown in Figure 1.22. The concept of a transient is more diffi- -
cult to grasp. As noted in Section 1.3.4, a transient may be described as a noise-like
sound component of short duration and high amplitude typically occurring at the
beginning of a musical tone or a more general sound event. However, the release or
offset of a sustained note may also contain a transient-like component. In transient
regions, the signal evolves quickly inan unpredictable and rather chaotic way. For
example, in the case of a piano, the transient corresponds to the initial phase where
a key is hit, the damper is raised, the hammer strikes the strings, the strings start
to vibrate, and the vibrations are transmitted to the large soundboard that starts res-
onating to finally yield a steady and sustained sound. As opposed to the attack and
transient, the onset of a note refers to the single instant (rather than a period) that
marks the beginning of the transient, or the earliest time point at which the transient
can be reliably detected (see Figure 6.2b).

To detect note onsets in the signal, the general idea is to capture sudden changes
that often mark the beginning of transient regions. For notes that have a pronounced
attack phase, onset candidates may be determined by locating time positions where
the signal’s amplitude envelope starts increasing. When this is not the case, such as
for nonpercussive music with soft onsets and blurred note transitions, the detection
of onsets is much more challenging. For example, the waveform of a violin sound,
as shown in Figure 1.23b, may exhibit a slow energy increase rather than an abrupt
change as in a piano sound. For soft sounds, it is hard to determine thé exact onset
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position. The detection of individual note onsets becomes even harder when dealing
with complex polyphonic music. Simultaneously occurring sound events may result
in masking effects, where no significant changes in the signal’s energy are mea-
surable. In these cases, more refined onset detection methods are needed, e.g., by
looking at changes in the signal’s short-time spectrum or other statistical properties,

In this section, we study four different approaches for onset detection: an energy-
based approach (Section 6.1.1), a spectral-based approach (Section 6.1.2), a phase-
based approach (Section 6.1.3), and a complex-domain approach (Section 6.1.4).
All approaches follow the same algorithmic pipeline, but differ in the signal proper-
ties that are exploited to derive onset candidates. In this pipeline, the signal is first
converted into a suitable feature representation that better reflects the properties of
interest. Then, a type of derivative operator is applied to the feature sequence and
a novelty function is derived. Finally, a peak-picking algorithm is employed to lo-
cate the onset candidates. Note that this general procedure is exactly the same as
for novelty detection in the context of music structure analysis (see Section 44.1).
However, the features and, in particular, the temporal levels that are relevant in struc-
ture analysis and onset detection are quite different. While a tolerance window of
500 ms up to a couple of seconds may be used in the case of structural boundaries,
the accuracy needed in onset detection is usually far below 100 ms, sometimes even
on the order of 10 ms.!

6.1.1 Energy-Based Novelty

We have seen that playing a note on an instrument often coincides with a sudden
increase of the signal’s energy. For example, this holds when striking a key on a
piano, plucking a string on a guitar, or hitting a drum with a stick. Based on this
observation, a straightforward way to detect note onsets is to transform the signal
into a local energy function that indicates the local energy of the signal for each
time instance and then to look for sudden changes in this function, Mathematically,
this procedure can be realized as follows: Let x be a DT-signal. As in the case of
a discrete STFT (see Section 2.5.3), we fix a discrete window function w : 7 —
R, which is shifted over the signal x to determine local sections. In particular, we
assume that w is a bell-shaped function centered at time zero® and that w(m) for-
'm € [-M : M] comprises the nonzero samples of w for some M € N. The local
energy of x with regard to w is defined to be the function B, : Z — R given by

M

Ey(m) =}, kntmwm)® =Y [x(mw(im—n)? 6.1)

m=—M meZ

! This is the range where the human ear is no longer capable of distinguishing between two subse-
quent transients [52].

2 In Section 2.5.3, to simplify notation, we considered the noncentered case assuming that the
nonzero window coefficients are w(n) forn € [0: N — 1].
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for n € Z. In other words, E%,(n) contains the energy (as defined in (2.41)) of the
signal x multiplied with a window shifted by n samples. Let us have a look at the
example shown in Figure 6.3b, which shows a local energy function for the begin-
ning of “Another one bites the dust” by Queen. Starting with an offbeat consisting of
two sixteenth notes played only by bass, four percussive ‘beats (played by kick drum,
snare drum, hihat, and bass) follow (see Figure 6.1), Furthermore, between each two
subsequent beats, there is an additional hihat stroke. As the energy function shows,
the percussive beats contain a lot of energy, whereas the low-energy hihat strokes
are not as strongly captured.

Intuitively, to measure energy changes, we take a derivative of the local energy
function. In the discrete case, the easiest way to realize such a derivative is to take the
difference between two subsequent energy values (see Figure 6.3c). Furthermore,
since we are interested in energy increases (and not decreases), we keep only the
positive differences while setting the negative differences to zero. The latter step is
known as half-wave rectification and is notated as:

_rdlrl _fn ifrz0,
o= 7 ”{o, ifr <0 62)

for r € R. Altogether, we obtain an energy-based novelty function Agnergy Z—R

given by
Apnergy (1) == By, (n+1)— Ej,(n) |zo (6.3)
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Fig, 6.4 Waveform and energy-based novelty function of the note C4 (261.6 Hz) played by differ-
ent instruments (see Figure 1.23). (a) Piano. (b) Violin.-(c) Flute.

for n € Z. The resulting function is shown in Figure 6.3d for our example “An-
other one bites the dust.” The four quarter-note drum beats correspond to the four
highest peaks. Therefore, these beats can be correctly detected by a simple peak-
picking procedure. Also, the two beginning offbeats played by the bass are correctly
identified by the first two peaks. However, the four hihat strokes between the beat
positions do not show up in Agpergy (see Figure 6.3d). As mentioned before, these
four hihat events contain relatively little energy and, when compared with the high-
energy drum events, become invisible in the energy-based novelty function.

As we discussed in Section 1.3.3, the human perception of sound intensity is log-
arithmic in nature. Therefore, even musical events of rather low energy may still be
perceptually relevant. For example, the hihat is clearly audible even at the beat posi-
tions where it is overlaid with the strong drum hits. To account for such phenomena,
one often applies a logarithin to the energy values, for example, by switching to the
logarithmic decibel scale (1.6) or by applying logarithmic compression (3.7). Note
that, in the logarithmic case, the resulting novelty function corresponds to (the log-
arithm of) energy ratios rather than differences as shown by the following equation:

ALE () = log(B (n+ 1)) — log (B () o = \xog (M) (64

B (n)

>0

As can be seen in Figure 6.3e, even the weak hihat onsets become visible in the
logarithmic novelty function. On the downside, however, the logarithm may also
amplify noise-like sound components, possibly leading to spurious peaks.

Another general problem in onset detection is energy fluctuation in nonsteady
sounds as a result of vibrato or tremolo (see Section 1.3.4). Especially for purely
energy-based procedures, amplitude modulations often lead to spurious peaks in
the resulting novelty function. This is demonstrated by Figure 6.4, which shows
the energy-based novelty function for the note C4 played by different instruments.
While the novelty function shows a single clear peak in the case of a piano sound,
there are many additional peaks in the case of a violin or flute sound. Furthermore,
the relatively slow energy increase at the beginning of the violin sound leads to a
smeared and temporally inaccurate onset peak.
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To increase the robustness of onset detection, a typical approach is to first decom-
pose the signal into several subbands that contain complementary frequency infor-
mation. Then one computes a novelty function for each subband separately and suit-
ably combines the individual functions to derive the onset information. For exam-
ple, the subbands may correspond to musical pitches as discussed in Section 3.1.1,
which results in pitch-based novelty functions. To exploit prior knowledge, one may
use broader frequency bands that correspond to typical ranges of musical instru-
ments (see Exercise 1.11). In the next section, we study an approach that decom-
poses a signal into subbands that correspond to the spectral coefficients. In this case,
the resulting novelty function measures spectral changes, which yields more refined
information than purely energy-based approaches.

6.1.2 Spectral-Based Novelty

Onset detection becomes a much harder problem for polyphonic music with simul-
taneously occurring sound events. A musical event of low intensity may be masked
by an event of high intensity. Energy fluctuations (e.g., coming from vibrato) in the
sustain phase of one instrument may be stronger than energy increases in the attack
phase of other instruments. Therefore, in the case of multiple instruments playing
at the same time, it is generally hard to detect all onsets when using purely energy-
based methods. However, the characteristics of note onsets may strongly depend
on the respective type of instrument. For example, for percussive instruments with
an impulse-like onset, one can observe a sudden increase in energy that is spread
across the entire spectrum of frequencies (see Figure 2.21a). Such noise-like broad-
band transients may be observable in certain frequency bands even in polyphonic
mixtures. In particular, since the energy of harmonic sources is concentrated more
in the lower part of the spectrum, transients are often well detectable in the higher-
frequency region.

Motivated by such observations, the idea of spectral-based novelty detection is
to first convert the signal into a time~frequency representation and then to capture
changes in the frequency content. In the following, let X be the discrete STFT of
the DT-signal x as defined in (2.26) or (2.148). For a discussion of the various pa-
rameters, including the sampling rate Fy = 1/T, the window length N of the discrete
window w, and the hop size H, we refer to Section 2.5.3 or Section 3.1.1. For the
moment, we only need to keep in mind that &'(n,k) € C denotes the k® Fourier
coefficient for frequency index k € [0 : K] and time frame n € Z, where K = N/2is
the frequency index corresponding to the Nyquist frequency.

To detect spectral changes in the signal, one basically computes the difference
between subsequent spectral vectors using a suitable distance measure. This results
in a spectral-based novelty function, which is also known as the spectral flux.
There are many different ways of computing such a novelty function, which depend
not only on the parameters of the STFT and the distance measure, but also on pre-
and postprocessing steps that are often applied.
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Fig. 6.5 Logarithmic compression (using the same audio excerpt as in Figure 6.1). The figure
shows the respective magnitude spectrogram (top) and the resulting novelty function Espec,,al (bot-
tom). (a) Magnitude spectrogram. (h) Compressed spectrogram using 7= 1. (¢) Compressed spec-
trogram using ¥ = 1000.

In the following, we describe a typical procedure. First, to enhance weak spec-
tral components, we apply a logarithmic compression to the spectral coefficients.
Such a step, as we have already encountered in the context of chroma features
(Figure 3.7), is often applied to account for the logarithmic sensation of sound in-
tensity and to balance out the dynamic range of the signal. To obtain the compressed
Spectrogram, we apply the function I of (3.7) to the magnitude spectrogram |X/|.
This yields :

Y= LX) =log(1 +v-|x]) (65)

for a suitable constant ¥ > 1. In onset detection, logarithmic compression is partic-
ularly helpful for enharncing the comparatively weak high-frequency information.
This is also illustrated by Figure 6.5, which continues our example “Another one
bites the dust” from Figure 6.1. In the visualization of the original spectrogram | Y|
(Figure 6.5a), the harmonic components of the bass are visible in the low-frequency
part. However, the transients at the beat positions can hardly be recognized. Using
a compressed spectrogram with y = 1 (Figure 6.5b), the vertical structures of the
transients become more prominent—even the weak transients of the hihat between
subsequent beats become visible. By increasing ¥, the low-intensity values are fur-
ther enhanced. On the downside, a large compression factor Y may also amplify
nonrelevant noise-like components. '

In the next step, we compute the discrete temporal derivative of the compressed
spectrum V. Similarly to the energy-based novelty function, we only consider the
positive differences (increase in intensity) and discard negative ones. This yields the
spectral-based novelty function Aspectral : Z — R defined by

K .

ASpectral(n) = Z l\y(n"“ lak) - y(nak)lgo (6.6)
k=0
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for n € Z, where we use the half-wave rectification as introduced in (6.2). One can
further enhance the properties of the novelty function by applying suitable postpro-
cessing steps. For example, in view of a subsequent peak-picking step, one objec-
tive may be to enhance the peak structure of the novelty function, while suppressing
small fluctuations. To this end, we introduce a local average function y : Z — R by

setting

1 M
/.L(n) = M—l mz;MASpectxal(n +m), . 6.7
n € Z, where the parameter M € N determines the size of an averaging window. The
enhanced novelty function Agpectral 1S obtained by subtracting the local average from
Agpeciral 2nd by only keeping the positive part (half-wave rectification):

A_Spectral(”) = lASpectral(n) - “(n)‘zo 6.8)

for n € Z. Figure 6.6 illustrates the computational pipeline by means of our running
example. As opposed to the energy-based novelty functions (Figure 6.3), the en-
hanced spectral-based novelty function Especmﬂ (Figure 6.6d) not only indicates the
onsets at the four beat positions, but also has significant peaks at the four weak hihat
onsets between the beats. Even though the hihat sounds have a comparatively low
intensity, they produce sharp transients, which are captured well by the compressed

magnitude spectrogram (see also Figure 6.5¢).
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Fig. 6.7 Different novelty functions for an audio excerpt of Shostakovich’s Waltz No. 2 from
the “Suite for Variety Orchestra No. 1. (a) Score representation (in a piano reduced version).
(b) Waveform. () Energy-based novelty function. (d) Spectral-based novelty function. (e) Anno-
tated note onsets (downbeat positions are marked by thicker lines).

As a second example, let us have a look at an excerpt of an orchestra record-
ing of the Waltz No. 2 from Dimitri Shostakovich’s Suite for Variety Orchestra
No. 1, an example we have already used in Figure 4.11. The first beats (downbeats)
of the 3/4 meter are played softly by nonpercussive instruments, leading to rela-
tively weak and blurred onsets. In contrast, the second and third beats are played
-sharply (“staccato”), supported by percussive instruments. These properties are also
reflected by the spectral-based novelty function shown in Figure 6.7d. The peaks
that correspond to downbeats are hardly visible or even missing, whereas the peaks
that correspond to the percussive beats are much more pronounced. The figure also
shows the improvements one obtains for this example when using spectral-based
methods (Figure 6.7d) compared with purely energy-based methods (Figure 6.7c).

As said before, there are many more approaches for computing spectral-based
novelty functions. For example, as with the energy-based case, it may be benefi-
cial to first split up the spectrum into several frequency bands (often five to eight
logarithmically spaced bands are used). The resulting bandwise novelty functions
are then weighted and summed up to yield the single overall novelty function (see
Exercise 6.4).
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. (&) Anno- .
In the definition of the spectral-based novelty function, we have only used the mag-
nitude of the spectral coefficients. However, the phases of the complex coefficients
5 record- are also an important source of information for various audio analysis and synthesis
Orchestra ~ tasks. In the following, we show how the phase information can be used for on-
ywnbeats) set detection. In particular, we exploit the fact that stationary tones have a stable
g to rela- phase, while transients have an unstable phase. For another application of the phase
re played information, we refer to Section 8.2.1.
s are also As before, let X(n,k) € C be the complex-valued Fourier coefficient for fre-
*he peaks quency index k € [0 : K] and time frame n € Z. Using the polar coordinate represen-
the peaks tation (2.9), this complex coefficient can be written as
igure also
ibased X(n) = X (1) exp(2i () 69)
re 6.7¢). with the phase @(n,k) € [0,1) (see also Section 2.3.2.2). Intuitively, as we ex-
tral-based plained in Section 2.1.1.1, the phase ¢(n,k) determines how the sinusoid of fre-
e ben.eﬁ- - quency Feoee(k) = Fy+ k/N (see (2.28)) has to be shifted to best correlate with the
efto el ght windowed signal corresponding to the nt? frame. Let us assume that the signal x
unctions has a high correlation with this sinusoid (i.e., | X (n,k)| is large) and shows a steady
ction (see behavior in a region of'a number of subsequent frames ...,7n— 2,n—1mn+1,...

(i.e., x is locally stationary). Then the phases ..., @(n— 2,k), o(n—1,k), o(n,k),
@(n+1,k),... increase from frame to frame in a fashion that is linear in the hop size
H of the STFT (see Figure 6.8). Therefore, the frame-wise phase difference in this
region remains approximately constant (possibly up to some integer, as we discuss
shortly in this section):
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P(nk) = @(n—1,k) ~ (n—1,k) — p(n—2,k). (6.10)
Let us define the first-order difference by
ng(i’L,k) = (P(I’l,k) - (p(n - 17k) (611)
and the second-order difference by
9" (n,k) == ¢ (n,k) — ¢’ (n—1,k). (6.12)

Note that one obtains ¢”(n,k) ~ 0 in steady regions of x. However, in transient
regions, the phase behaves quite unpredictably across the entire frequency range.
As a result, a simultaneous disturbance of the values ¢"(nk) for k€ [0:K] is a
good indicator for note onsets. Motivated by this observation, we define the phase-
based novelty function Appyg, by

X
Aphage (1) = Z [@" (n, k)| (6.13)
=0

forneZ.

At this point, we need to discuss a technical isste. Recall that the phase ¥ (in
radians) of a complex number ¢ € C is defined only up to integer multiples of 27
(see (2.9)). Therefore, the phase is often constrained to the interval [0,27) and the
number y € [0,27x) is called the principal value of the phase. In the scenario of
Fourier analysis, we are using the normalized phases ¢ = y/(2x). In this case, the
interval [0, 1) represents the principal values. When considering a function or a time
series of phase values (e.g., the phase values over the frames of an STFT as above),
the choice of principal values may introduce unwanted discontinuities. These ar-
tificial phase jumps are the results of phase wrapping, where a phase value just
below one is followed by a value just above zero (or vice versa). To avoid such
discontinuities, one often applies a procedure called phase unwrapping, where the
objective is to recover a possibly continuous sequence of (unwrapped) phase values
(see Figure 6.9). Such a procedure, however, is in general not well defined since the
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Fig. 6.10 Ilustration of the
complex-domain difference
X' (n,k) between an estimated
spectral coefficient £ (n +
1,k) and the actual coefficient
X(n+1,k).

original time series may possess “real” discontinuities that are hard to distinguish
from “artificial” phase jumps. In the onset detection context, phase jumps due to
wrapping may occur when computing the differences in (6.11) and (6.12). In these
cases, one needs to use an unwrapped version of the phase, As an alternative, we
introduce a principal argument function

¥R — [-0.5,0.5) ‘ (6.14)

which maps phase differences into the range [—0.5,0.5]. To this end, a suitable
integer value is added to or subtracted from the original phase difference to yield a
value in [—0.5,0.5]. The differences as defined in (6.11) and (6.12) are then replaced
by :

¢ (n,k) := P (p(n,k) — o(n—1,k)), (6.15)
" (n,k) =¥ (@' (n,k) — ¢’ (n— 1, k). (6.16)

Bven though the principal argument function may cancel out large discontinuities in
the phase differences, this effect is attenuated since we consider in (6.13) the sum
of differences over all frequency indices.

6.1.4 Complex-Domain Novelty

We have seen that steady regions within a signal may be characterized by a phase-
based criterion in the case that the sinusoid correlates well with the signal, However,
if the magnitude of the Fourier coefficient X (n,k) is very small, the phase ¢(n,k)
may exhibit a rather chaotic behavior due to small noise-like fluctuations that may
occur even within a steady region of the signal. To obtain a more robust detector,
one idea is to weight the phase information with the magnitude of the spectral coeffi-
cient. This leads to a complex-domain variant of the novelty function, which jointly
considers phase and magnitade. The assumption of this variant is that the phase
differences as well as the magnitude stay more or less constant in steady regions.
Therefore, given the Fourier coefficient X (n,k), one obtains a steady-state estimate
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X(n+1,k) for the next frame by setting
2 (n+1,k) =X (n, k) | exp(27i(9(n, k) + ' (n,k))) (6.17)

(see Figure 6.10). Then, we can use the magnitude between the estimate £ (n+ 1,k)
and the actual coefficient X' (n+ 1,k) to obtain a measure of novelty:

X' (n+1,k) =|X(n+1,k) — X(n+1,k)|. (6.18)

The complex-domain difference X' (n, k) quantifies the degree of nonstationarity for
frame n and coefficient k. Note that this number does not discriminate between note
onsets (energy increase) and note offsets (energy decrease). Therefore, we decom-
pose &’(n,k) into a component X (n, k) of increasing magnitude and a component
A~ (n,k) of decreasing magnitude:

X'(n,k) for |X(n,k)| > |X(n—1,k)|

+ -
x (n,k)—{ 0 otherwise, (6.19)

X (n,k) = {X/(g,k) for |X(n,k)| < |X(n—1,k)|

otherwise. (6.20)

A complex-domain novelty function Acomplex for detecting note onsets can then
be defined by summing the values X (n,k) over all frequency coefficients:

X .
AComplex("l,k) = Z xt (n,k)~ ' (6.21)
k=0

Similarly, for detecting general transients or note offsets, one may compute a novelty
function using X’ (n,k) or X~ (n, k), respectively.

6.2 Tempo Analysis

The extraction of tempo and beat information from audio recordings is a challenging
problem in particular for music with weak note onsets and local tempo changes. For
example, in the case of romantic piano music, the pianist often takes the freedom
of speeding up and slowing down the tempo-—an artistic means also referred to as
tempo rubato. There is a wide range of music where the notions of tempo and beat
remain rather vague or are even nonexistent. Sometimes, the rhythmic flow of music
is deliberately interrupted or disturbed by syncopation, where certain notes outside
the regular grid of beat positions are stressed. To make the problem of tempo and
beat tracking feasible, most automated approaches rely on two basic assumptions.
The first assumption is that beat positions occur at note onset positions, and the
second assumption is that beat positions are more or less equally spaced—at least
for a certain period of time. Even though both assumptions may be violated and




6.2 Tempo Analysis o317
Fig. 6.11 Tlustration of two 1 r T
diferont tempogram epe @ <IN
sentations 7 of a click track LA RA AR
with increasing tempo (170 to 0 5 1 %
200 BPM). The large values 600 i ' 02
T (t,7) around ¢ = 5 sec and g 015
7= 180 BPM are highlighted & &% - o
by the rectangular frames. g S0 :
(a) Novelty function of click @ 200, Q S 0.05
track. (b) Tempogram with a1 ) .
harmonics. (¢) Tempogram 0 3 10 18
with subharmonics. 600 0.2
g 500 015
4001+
(© ‘;ﬁ o1
£
R 0.05

Time (seconds)

inappropriate for certain types of music, they are convenient and reasonable for a
wide range of music including most rock and popular songs.

Based on these two assumptions, we discuss in this section various time—tempo
or fempogram representations, which capture local tempo characteristics of music
signals (Section 6.2.1). To derive such representations, we study two methods for
analyzing novelty functions with regard to reoccurring or quasiperiodic patterns. Us-
ing Fourier analysis, we show how to derive a tempogram by comparing the novelty
function with templates that consist of windowed sinusoids, each representing a spe-
cific frequency or tempo (Section 6.2.2). For the second method, we discuss an auto-
correlation approach where a tempogram is obtained by comparing a novelty func-
tion with localized time-shifted copies of itself (Section 6.2.3). Finally, we introduce
robust mid-level representations referred to as cyclic tempograms (Section 6.2.4),
which are the tempo-related counterpart of the harmony-related chroma representa-
tions. The properties of the tempogram representations are illustrated in the context
of music segmentation.

6.2.1 Tempogram Representations

In Section 2.5.2, we studied the concept of a (magnitude) spectrogram, which rep-
resents the time—frequency content of a given signal. A large value Spec(t, ®) of a
spectrogram indicates that the signal contains at time instance ¢ a periodic compo-
nent that corresponds to the frequency o (see (2.141)). We now introduce a similar
concept referred to as a tempogram, which indicates for each time instance the lo-
cal relevance of a specific tempo for a given music recording. Mathematically, we
model a tempogram as a function '
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T :RxRsg— Rsg (6.22)

depending on a time parameter ¢ € R measured in seconds and a tempo Parameter
7 € R,y measured in beats per minute (BPM). Intuitively, the value T (t,7) indicates
the extent to which the signal contains a locally periodic pulse of a given tempo £
in a neighborhood of time instance z. For example, the tempogram of Figure 6,11}
has a large value 775, 180), thus indicating that the music signal has a dominant
tempo of T = 180 BPM around time position ¢ = 5 sec. Just as with spectrograms
(Section 2.5.3), one computes a tempogram in practice only on a discrete time—
tempo grid. As before, we assume that the sampled time axis is given by [1:N]. To
avoid boundary cases and to simplify the notation in the subsequent considerations,
we extend this axis to Z. (The Tespective representations are then extended by, e.g.,
zero-padding.) Furthermore, let ® ¢ R be a finite set of tempi specified in BPM.
Then, a discrete tempogram is a function

T:Zx0 — Ry (6.23)

Most approaches for deriving a tempogram representation from a given audio L
recording proceed in two steps. Based on the assumption that pulse positions usu- L
ally go along with note onsets, the music signal is first converted into a novelty |
function (see Section 6. 1). This function typically consists of impulse-like spikes,
each indicating a note onset position. In the second step, the locally periodic be-
havior of the novelty function is analyzed. To obtain a tempogram, one quantifies
the periodic behavior for various periods T > 0 (given in seconds) in a neighbor-
hood of a given time instance. The rate @ = 1/T (measured in Hz) and the tempo 7
(measured in BPM) are related by

T=60- 0. (6.24)

For example, a sequence of impulse-like spikes that are regularly spaced with period
T' = 0.5 sec corresponds to a rate of @ — 1 /T=2Hzora tempo of 7= 120 BPM.

One major problem in determinin g the tempo of a music recording arises from the
fact that pulses in music are often organized in complex hierarchies that represent
the thythm. In particular, there are various levels that are presumed to contribute to ]
the human perception of tempo and beat. For example, as illustrated by Figure 6.12,
one may consider the tempo on the tactus level, which typically corresponds to the
quarter note level and often matches the foot tapping rate. Thinking at a larger musi-
cal scale, one may also perceive the tempo at the measure level, in particular when
listening to fast music or to highly expressive music with strong rubato. Finally,
one may also consider the tatum (temporal atom) level, which refers to the fastest
repetition rate of musically meaningful accents occurring in the signal.

Often the tempo ambiguity that arises from the existence of different pulse levels
is also reflected in a tempogram 7T, Higher pulse levels often correspond to inte-
ger multiples 7,27,37,... of a given tempo 7. As with pitch (Section 1.3.2), we
call such integer muitiples (tempo) harmeonics of 7. Furthermore, integer fractions
T,7/2,7/3,... are referred to as (tempo) subharmonics of . Analogous to the
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notion of an octave for musical pitches (see Section 1.1.1), the difference between
two tempi with half or double the value is called a tempo octave. For an illustra-
tion, we refer to Figure 6.11, which shows two different types of tempograms for
a click track of increasing tempo (raising from 170 to 200 BPM over the course
of 20 sec). The tempogram of Figure 6.11b emphasizes tempo harmonics, whereas
the tempogram of Figure 6.11c emphasizes tempo subharmonics. In the following,
we will study two conceptually different methods that are used fo derive these two

tempograms.

6.2.2 Fourier Tempogram

As a first periodicity estimation method, we show how a short-time Fourier trans-
form can be used to derive a tempogram from a given novelty function A : Z — R.
Dealing with a discrete-time signal A, we consider the discrete version of the STFT
as discussed in Section 2.5.3. To this end, we fix a window function w: Z — R of
finite length centered at n = 0 (e.g., a sampled Hann window as defined in (2.140)).
Then, for a frequency parameter @ € R>q and time parametet n € Z, the complex
Fourier coefficient F(n, @) is defined by

Fln,0) = A%(n,0) = }:ZA(m)w(m—n> exp(—2miom).  (6.25)

This definition corresponds to (2.143) when using a hop size H = 1. Converting
frequency to tempo values based on (6.24), we define the (discrete) Fourier tem-
pogram TF : Z x ® — Ry by

TE(n,1) == |F(n,7/60)|. (6.26)
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The Fourier-based analysis of the novelty function is also illustrated by Figure 6.13
which continues our Shostakovich example from Figure 6.7. As the Fourier tem-
pogram TF (Figure 6.13b) reveals, the dominant tempo of this excerpt is betweey
200 and 300 BPM. Starting with roughly 7 = 225 BPM, the tempo slightly increageg
over time. An entry 7 (n,7) of the tempogram is obtained by locally comparing
the novelty function A in a neighborhood of # with a windowed sinusoid that rep-
resents the tempo 7. This kind of analysis is shown in Figure 6.13c for a time index
n that corresponds to the physical time 7 = 2 sec and a frequency parameter @ that
corresponds to the tempo 7 = 230 BPM. In this case, the positive parts of the win-
dowed sinusoid nicely align with the impulse-like peaks of the novelty function A,
whereas the negative parts of the sinusoid fall into the zero-regions of A. As a re-
sult, there is a high correlation between the windowed sinusoid and A, which leads
to a large coefficient 7 (n, 7). In contrast, using a sinusoid that represents only half
this tempo leads to a small coefficient, as illustrated by Figure 6.13d. In this case,
every second peak of A falls into the positive parts of the sinusoid, whereas the
remaining peaks of A fall into the negative parts of the sinusoid. Because of the
resulting cancellations, the correlation between A and the sinusoid becomes small,
Finally, Figure 6.13e illustrates that one obtains a high correlation when using a si-
nusoid that represents twice the main tempo. In this case, the peaks of A are aligned
with every second positive part of the sinusoid, whereas all other parts of the sinu-
soid fall into the zero-regions of A. Our discussion shows that a Fourier tempogram
generally indicates tempo harmonics, but suppresses tempo subharmonics. This fact
is illustrated by Figure 6.11b, which shows the Fourier tempogram of a synthetic
click track. Also, in our Shostakovich example, the second tempo harmonic start-
ing at 7 = 450 BPM is clearly visible in 7F (Figure 6.13b). Interestingly, because
of the weak downbeats every third beat within the 3/4 meter (see our discussion of
Figure 6.7), the tempogram 7T also shows some larger coefficients that correspond
to 1/3 and 2/3 of the main tempo (see Exercise 6.5)

For practical applications, 7T is computed only for a small oumber of tempo
parameters. For example, one may choose the set ® = [30 : 600] covering the (in-
teger) musical tempi between 30 and 600 BPM. The bounds are motivated by the
assumption that only musical events showing a temporal separation between roughly
100 ms (600 BPM) and 2 sec (30 BPM) contribute to the perception of tempo. This
tempo range requires a spectral analysis of high resolution in the lower frequency
range. Therefore, a straightforward FFT as discussed in Section 2.4.3 is not suitable.
However, since only relatively few frequency bands (tempo values) are needed for
the tempogram, computing the required Fourier coefficients individually according
to (6.25) still has a reasonable computational complexity. As for the temporal res-
olution, one can set w to be a sampled Hann window as defined in (2.140) of size
2N +1 for some N € N. Depending on the respective application and the nature of
the music recording, a window size corresponding to 4-12 sec of audio is a rea-
sonable range. Finally, note that the feature rate of the resulting tempogram can be
adjusted by introducing a hop size parameter H in (6.25) as used in (2.143).
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6.2.3 Autocorrelation Tempogram

As a second periodicity estimation method, we now discuss an autocorrelation-
based approach. Generally speaking, the autocorrelation is a mathematical too]
for measuring the similarity of a signal with a time-shifted version of itself. Since
the inner product as defined in (2.43) is used for this measurement, this technique
is also known as the sliding inner product. In the following, we only consider the
case of discrete-time and real-valued signals. Let x & £2 (Z) be such a signal having
finite energy (see (2.41)). The autocorrelation Ry : Z — R of the real-valued signal
x is defined by

R (£) = Z x(m)x(m—£), (6.27)

meZ

which yields a function that depends on the time-shift or lag parameter £ € Z. As
shown in Exercise 6.6, the autocorrelation is well defined for signals in the space
£(Z). Purthermore, Ryx(£) is maximal for £ = 0 and symmetric in Z. Intuitively, if
the autocorrelation is large for a given lag, then the signal contains repeating patterns
that are separated by a time period as specified by the lag parameter,

We now apply the autocorrelation in a local fashion for analyzing a given novelty
function A : Z — R in the neighborhood of a given time parameter n. As in the case
of the Fourier tempogram discussed in the last section, we fix a window function
W :Z — R of finite length centered at 7 = 0. The windowed version Apn:Z—R
localized at point 7 € Z is defined by

Apn(m) = A(m)w(m—n), (6.28)
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m € Z. Recall that we have used a similar definition when introducing the STFT
(see (2.133)). To obtain the short-time autocorrelation A : 7, x Z — R, we apply
(6.27) to Ay, and define

An,8) =Y, A(m)w(m —n)A(m—L)w(m—n—2). (6.29)

meZ

When assuming that the window function w is of finite length, the autocorrelation of
the localized novelty function is zero for all but a finite number of time lag parame-
ters. In the following, let us assume that the support of the window function w lies in
the interval [—L : L] for some L € N. Then one has A(n,£) =0 for |£] > 2L+ 1 (see
Exercise 6.7). Because of this property and the symmetry of the autocorrelation, one
only needs to consider the time lag parameters £ € [0: 2L). Furthermore, because of
the windowing, at most 2L+ 1 — £ of the summands in (6.29) are nonzero. To bal-
ance out the effect of the windowing, the value .4(n, £) may be divided by a factor
that depends on the window properties and the overlap 2L+ 1 — ¢ of the window
and its time-shifted version.

Visualizing the short-time autocorrelation .4 leads to a time-lag representa-
tion. Before we discuss how this representation can be converted into a time—
tempo representation, let us first have a look at Figure 6.14, which continues our
Shostakovich example. The window w used in this example is a rectangular win-
dow that has a length corresponding to 2 sec of the original andio recording. Let us
consider the time index n corresponding to the time instance ¢ — 3 sec. To compute
A(n,£), one only considers the section of the novelty function A between 2 sec and
4 sec (Figure 6.14a). We have seen that the tempo of our Shostakovich recording is




roughly 230 BPM in this section, In other words, the duration of the interval between
«wo subsequent beats is roughly s = 0.26 sec. Let us consider the lag parameter £
that corresponds to a time shift of 5 = 0.26 sec. Then, as illustrated by Figure 6.14c,
the novelty function in this section nicely correlates with its time-shifted version:
he peaks of the section fall onto peaks of the section shifted by one beat period.
The same holds when shifting the section by two, three or more beat periods. For
cxample, Figure 6.14d shows the case s = 0.78 sec (three beat periods). This period
corresponds to a tempo of 77 BPM, which is the tempo on the measure level. In
contrast, when using a lag £ that corresponds to half a beat period s = 0.13 sec (dou-
ple tempo 461 BPM), the peaks of the section and the peaks of the shifted section
miss each other, thus resulting in a coefficient A(n,£) close to zero. This case is
illustrated by Figure 6.14e.

To obtain a time—tempo representation from the time-lag representation, one
needs to convert the lag parameter into a tempo parameter. To this end, one requires
the frame rate or time resolution of the novelty function. Suppose that each time
frame corresponds to 7 seconds, then a time lag of £ (given in frames) corresponds
to £-7 seconds. Since a shift of £.7 seconds corresponds to a rate of 1/(£-r) Hz, one
obtains from (6.24) the tempo

60
7= — BPM. (6.30)
r-f
Based on this conversion, the lag axis can be interpreted as a tempo axis as illustrated
by Figure 6.15b. This allows us to define the autocorrelation tempogram 7 by
setting

TA(n,7) :="A(n,%) 6.31)

for each tempo T = 60/(r-£), £ € [1: L]. Note that in this case, since the tempo
values are reciprocal to the linearly sampled lag values, the tempo axis is sampled in
a nonlinear fashion. To obtain a tempogram 72 : Z x ® — Ry that is defined on the
same tempo set © as the Fourier tempogram 7 F_one can use standard resampling
and interpolation techniques applied to the tempo domain. The result of such an
interpolation step is shown in Figure 6.15¢.

As another example, Figure 6.11c shows the autocorrelation tempogram of a
click track. This figure illustrates that, as opposed to the Fourier tempogram, an
autocorrelation tempogram exhibits tempo subharmonics, but suppresses tempo har-
monics, We have already given the argument for this behavior when discussing
Figure 6.14: a high correlation of a local section of the novelty function with the
section shifted by £ samples also implies a high correlation with a section shifted
by k- £ lags for integers k € N. Assuming that £ corresponds to tempo 7, thelagk- £
corresponds to the subharmonic 7/k.

This property is also evident in our Shostakovich example. Similar to the Fourier
tempogram 7 (Figure 6.13b), the autocorrelation tempogram TA (Figure 6.15¢)
reveals the dominant tempo at T = 225 BPM, which corresponds to the quarter
note level. However, as opposed to TF, the dominant tempo revealed by 7~ A s at
T =75 BPM, which corresponds to the tempo on the measure level and is the third
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Fig. 6.15 Conversion from lag to tempo. (a) Time-lag representation with linear lag axis. (b) Rep-
resentation from (a) with tempo axis. (¢) Time—tempo representation with linear tempo axis.
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subharmonic of 7 = 225 BPM. Reflecting the 3/4 meter of the waltz, the dominance
of the tempi 7 = 225 BPM and 7 = 75 BPM is also of musical relevance. In conclu-
sion, one may say that the Fourier tempogram and autocorrelation tempogram yield
different types of tempo information and ideally complement each other.

Assuming a more or less steady tempo, it suffices to determine one global tempo
value for the entire recording. Such a value may be obtained by averaging the tempo
values obtained from a frame-wise periodicity analysis. For example, based on a
tempogram representation, one can average the tempo values over all time frames
to obtain a function Taverage : @ — R0 that only depends on 7 € @. Assuming that
the relevant time positions lie in the interval [1 : N, one may define 7TAverage by

1

Taverage(T) i= N Z T(n,1). 6.32)
ne(1:N}
The maximum
% = max{ﬂverage(f) | TE @} (6.33)

of this function then yields an estimate for the global tempo of the recording. Of
course, more refined methods for estimating a single tempo value may be applied.
For example, instead of using a simple average in (6.32), we may apply median
filtering, which is more robust to outliers and noise. Also, to alleviate the problem
of tempo octave confusion, one may improve the result by a combined usage of the
Fourier and autocorrelation tempograms.

When dealing with music that exhibits significant tempo changes, one needs 0
estimate the local tempo in the neighborhood of each time instance, which is a much
harder problem than global tempo estimation. Having computed a tempogram, the
frame-wise maximum yields a good indicator of the locally dominating tempo. In
the case that the tempo is relatively steady over longer periods of time, one may
increase the window size to obtain more robust and smoother tempo estimates

However, it then becomes harder to detect sudden tempo changes and local tempo
' fluctuations—the same trade-off we have already encountered in the case of the
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STFT (see Section 2.5.2). Furthermore, instead of simply taking the frame-wise
maximum—a strategy that is prone to local inconsistencies and outliers—global
optimization techniques based on dynamic programming may be used to obtain
smooth tempo trajectories. Such strategies will be discussed in Section 6.3 in the
context of beat tracking. In both global and local tempo estimation, one often has to
struggle with confusions of tempo harmonics and subharmonics, which are the re-
sult of the existence of various pulse levels such as measure, tactus, and tatum. In the
following section, we introduce a robust mid-level representation that is impervious
to tempo octave confusions while still capturing local tempo information.

6.2.4 Cyclic Tempogram

The various pulse levels mentioned above can be seen in analogy to the existence
of harmonics in the pitch context (see Section 1.3.2). To reduce the effects of har-
monics, we introduced in Section 3.1.2 the concept of chroma-based audio features.
By identifying pitches that differ by one or several octaves, we obtained a cyclic
mid-level representation that captures harmonic information while being robust to
changes in timbre. Inspired by the concept of chroma features, we now introduce
the concept of cyclic tempograms. The idea is to form tempo equivalence classes
by identifying tempi that differ by a power of two. More precisely, we say that two
tempi 71 and 7; are octave equivalent, if they are related by 71 = 2k1, for some
k € Z. For a tempo parameter T, we denote the resulting tempo equivalence class by
[7]. For example, for 7= 120 one obtains [7] = {...,30,60, 120,240,480...}. Given
a tempogram representation 7 : Z X Rsg — R>o, we define the cyclic tempogram
by i

Clna)) =Y, T(n,A). (6.34)

A€E]T]

Note that the tempo equivalence classes topologically correspond to a circle. Fixing
a reference tempo 1, the cyclic tempogram can be represented by a mapping Cq :
Zx R>0 — RZO defined by

Cqp(n,8) :=C(n,[s- T0]) (6.35)

for n € Z and a scaling parameter s € Rg. Note that Cqy(n,5) = Cq,(n,2%s) for
k € Z. In particular, Cy, is completely determined by its values s € [1,2).

These definitions are illustrated by Figure 6.16, which shows various tem-
pograms for a click track of increasing tempo (110 to 130 BPM), similar to the
one used in Figure 6.11. As demonstrated by Figure 6.16a, the Fourier tempogram
TF indicates the tempo as well as its tempo harmonics. Using a reference tempo
T = 60 BPM, the resulting cyclic Fourier tempogram, which we denote by C%, is
shown in Figure 6,16¢. In the pitch context, given a reference frequency ®, the fre-
quency 3@ is an octave plus a fifth higher, and 3w can be regarded as the dominant
to the tonic @. In analogy to the pitch context, we call the tempo class [37], which
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